Total No. of Questions : 8]	290	SEAT No. :
P6537		[Total No. of Pages :
	[61811-86	

B.E. (Civil Engineering) DAMS AND HYDRAULICS STRUCTURES (2019 Pattern) (Semester - VIII) (401011)

		(2019 Pattern) (Semester - VIII) (401011)	
Tim	o · 21	½ Hours] [Max. Mar	rks · 70
		ions to the candidates:	NS . 70
	1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.	
	<i>2</i>)	Neat skeiches diagrams must be drawn wherever necessary.	
	3)	Figures to the right indicate full marks for the sub-questions.	
	<i>4)</i>	Assume suitable data if necessary and state them in your answer clearly.	
	<i>5)</i>	Use non-programmable pocket size electronic calculator is allowed.	
Q1)	a)	Define spillway & state its purpose.	[5]
	b)	Enlist main components of spillway & explain Control structure.	[5]
	c)	Design an ogee spillway for concrete gravity dam, for the following	g data.
			[7]
		i) Average river bed level = 160 m	
		ii) Slope of D/S = 0.75 H; 1V, u/s face is vertical	
		iii) Spillway crest RL 265 m	
		iv) Design discharge = 5530 m ³ /s	
		v) Spillway length is 6 spans with a clear length of 7 m each.	
		vi) Pier thickness = 2m.	
		OR	S.O.
() ()	۵)		inotor
(2)	a)	Enlist type of energy dissipator & explain Ski jump type energy diss	_
	b)	State four types of chilly average and explain any properties to the	[5]
	b)		
	c)	Explain the design criteria of U.S. type II stilling basin. Draw	
.	`	sketch of the stilling basin.	[7]
<i>Q3)</i>	a)	Briefly explain various causes of modes of failure of earthen dams.	
	1 \	relevant sketches.	[5]
	b)		
		horizontal filter at the downstream.	[5]
	c)	With the help of appropriate sketches explain Swedish slip circle m	
		of stability analysis of an earth dam.	[8]

OR

Q4)	a)		[5]
	b)	Draw a neat sketch of a cross-section of earthen dam indicating to various components & explain any one component.	the [5]
	c)	Determine the factor of safety of downstream slope of (homogeneous)	
	,	section) an earth dam drawn to a scale of 1:650, for the following data:	
		Area of N-rectangle = 20 cm^2	
		Area of T-rectangle = 10 cm^2	
		Area of U-rectangle = 5 cm^2	
		Length of slip circle arc = 20 cm	
		angle of internal friction = 26°	
		cohesion $c = 24 \text{ kg/m}^2$ specific weight of soil = 18 kN/m^3	
		specific weight of soil – 18 kiv/iii	
<i>Q5</i>)	a)	What is a canal? Explain types of canals based on function.	[5]
20)	b)		[5]
	c)	Design a regime channel of trapezoidal section for carrying water at t	
	,	rate 10 cumecs having side slopes 1 H: 2 V, if Lacey's slit factor is 0.9	
			[7]
	0	OR	
<i>Q6)</i>	a)		[5]
		i) Canal falls	
	b)	ii) Canal outlets Write note on khosla's theory of independent variable.	[5]
	c)	Briefly explain kennedy's theory. What are the drawbacks of Kenned	[5] d's
	C)	theory.	ս 3 [7]շ ⁰
			.10
Q 7)	a)	Explain Khosla's theory of independent od seepage variable.	[5]
	b)	Explain the importance of exit gradient.	[5]
	c)	Draw a labelled sketch of diversion headworks Also enumerate t	the
			[8]
20 0)	,	OR OR	
Q8)	a)	Explain in brief:	[5]
		i) Level crossingii) Super passage	
	b)	Compare bligh's and lane's creep theores of seepage.	[5]
	c)	Write note on khosla's theory application for design of structure	
	- /	permeable foundations. Also explain the importance of exit gradient.	
			[8]
		~ (o. V	-
		0000	